143 research outputs found

    Effect of Respiration on the Characteristic Ratios of Oscillometric Pulse Amplitude Envelope in Blood Pressure Measurement

    Get PDF
    Systolic and diastolic blood pressures (BPs) are important physiological parameters for disease diagnosis. Systolic and diastolic characteristic ratios derived from oscillometric pulse waveform have been widely used to estimate automated non-invasive BPs in oscillometric BP measurement devices. The oscillometric pulse waveform is easily influenced by respiration, which may cause variability to the characteristic ratios and subsequently BP measurement. This study quantitatively investigated how respiration patterns (i.e., normal breathing and deep breathing) affect the systolic and diastolic characteristic ratios. The study was performed with clinical data collected from 39 healthy subjects, and each subject conducted BP measurements during normal and deep breathings. Analytical results showed that the systolic characteristic ratio increased significantly from 0.52 ± 0.13 under normal breathing to 0.58 ± 0.14under deep breathing (p < 0.05), and the diastolic characteristic ratio was not significantly affected from 0.75 ± 0.12 under normal breathing to 0.76 ± 0.13 under deep breathing (p = 0.48). In conclusion, deep breathing significantly affected the systolic characteristic ratio, suggesting that automated oscillometric BP device which is validated under resting condition should be strictly used for measurements under resting condition

    Understanding low-pass-filtered Mandarin sentences: Effects of fundamental frequency contour and single-channel noise suppression

    Get PDF
    The present work assessed the effects of flattening the fundamental frequency (F0) contour and processing by single-channel noise suppression on the intelligibility of low-pass (LP)-filtered (LPF) sentences. The original F0 contour was replaced by an average flat F0 contour or treated by single-channel noise suppression, followed by application of LP filtering to Mandarin sentences. Processed stimuli were presented to normal-hearing listeners to recognize. Flattening the F0 contour significantly affected the understanding of LPF sentences. Noise suppression by existing single-channel algorithms did not improve the intelligibility of LPF sentences

    Extracting fetal heart beats from maternal abdominal recordings: Selection of the optimal principal components

    Get PDF
    This study presents a systematic comparison of different approaches to the automated selection of the principal components (PC) which optimise the detection of maternal and fetal heart beats from non-invasive maternal abdominal recordings. A public database of 75 4-channel non-invasive maternal abdominal recordings was used for training the algorithm. Four methods were developed and assessed to determine the optimal PC: (1) power spectral distribution, (2) root mean square, (3) sample entropy, and (4) QRS template. The sensitivity of the performance of the algorithm to large-amplitude noise removal (by wavelet de-noising) and maternal beat cancellation methods were also assessed. The accuracy of maternal and fetal beat detection was assessed against reference annotations and quantified using the detection accuracy score F1 [2*PPV*Se / (PPV + Se)], sensitivity (Se), and positive predictive value (PPV). The best performing implementation was assessed on a test dataset of 100 recordings and the agreement between the computed and the reference fetal heart rate (fHR) and fetal RR (fRR) time series quantified. The best performance for detecting maternal beats (F1 99.3%, Se 99.0%, PPV 99.7%) was obtained when using the QRS template method to select the optimal maternal PC and applying wavelet de-noising. The best performance for detecting fetal beats (F1 89.8%, Se 89.3%, PPV 90.5%) was obtained when the optimal fetal PC was selected using the sample entropy method and utilising a fixed-length time window for the cancellation of the maternal beats. The performance on the test dataset was 142.7 beats2/min2 for fHR and 19.9 ms for fRR, ranking respectively 14 and 17 (out of 29) when compared to the other algorithms presented at the Physionet Challenge 2013

    Assessing the effect of noise-reduction to the intelligibility of low-pass filtered speech

    Get PDF
    Given the fact that most hearing-impaired listeners have low-frequency residual hearing, the present work assessed the effect of applying commonly-used singlechannel noise-reduction (NR) algorithms to improve the intelligibility of low-pass filtered speech, which simulates the effect of understanding speech with low-frequency residual hearing of hearing-impaired patients. In addition, this study was performed with Mandarin speech, which is characterized by its significant contribution of information present in (low-frequency dominated) vowels to speech intelligibility. Mandarin sentences were corrupted by steady-state speech-shaped noise and processed by four types (i.e., subspace, statistical-modeling, spectral-subtractive, and Wiener-filtering) of single-channel NR algorithms. The processed sentences were played to normal-hearing listeners for recognition. Experimental results showed that existing single-channel NR algorithms were unable to improve the intelligibility of low-pass filtered Mandarin sentences. Wiener-filtering had the least negative influence to the intelligibility of low-pass filtered speech among the four types of single-channel NR algorithms examined

    Neural Entrainment to Rhythms of Imagined Syllables

    Get PDF
    • …
    corecore